Available online at <u>www.ijpab.com</u>

DOI: http://dx.doi.org/10.18782/2582-2845.7068

ISSN: 2582 – 2845 *Ind. J. Pure App. Biosci.* (2020) 8(6), 73-81

Peer-Reviewed, Refereed, Open Access Journal

Research Article

Effect of Different Levels of Nitrogen and Novel Organic Liquid Fertilizer on Yield and Quality of Okra {*Abelmoschus esculentus* (L.) Moench} cv. GAO – 5.

Krishna Chotaliya^{1*}, S. S. Masaye¹, S. S. Gaikwad², Anjali Patel¹, J. K. Chavda²

¹Department of Vegetable Science, ²Department of Fruit Science Department of Vegetable Science, ASPEE College of Horticulture and Forestry, Navsari Agricultural University, Navsari- 396450 (Gujarat) *Corresponding Author E-mail: chotaliyakrishna18@gmail.com Received: 10.07.2020 | Revised: 14.09.2020 | Accepted: 23.09.2020

ABSTRACT

A field experiment was conducted, with a view to present study entitled "Effect of different levels of nitrogen and Novel organic liquid fertilizer on yield and quality of okra {Abelmoschus esculentus (L.) Moench} cv. GAO-5" during summer season 2017 at Agriculture Experimental Station (AES), Navsari Agricultural University, Village: Paria, Taluka: Pardi, District: Valsad, Gujarat, India. The experiment was laid out in Split Plot Design with comparing of two factors viz., different levels of nitrogen (100%, 80% and 60%) and Novel organic liquid fertilizer (0, 1 and 2%) with six replications. The result indicated that different nitrogen levels were significantly influenced the yield parameters of okra cv. GAO-5. Application of nitrogen @ 100 kg/ha was recorded significantly influenced the yield parameters like, days to 50% flowering (42.83 days), pod diameter (1.75 cm) days to 1st picking (48.11 days), number of pods per plant (15.93), pod length (11.36 cm), pod weight (11.18 g), pod yield per plant (0.148 kg/ha) and pod yield (10.93 t/ha). In case quality parameters like ascorbic acid (10.98 mg/100g) and fibre content (1.71%) were found significant superior in treatment N_1 (100% RDN) while TSS and protein content were found non-significant. The foliar application of 2% Novel organic liquid fertilizer (L_3) exhibited the significantly reduced to days to 50% flowering (41.02 days), days to I^{st} picking (47.33) consequently this treatment not only increased number of pods per plant (15.45), pod length (11.88 cm), pod weight (11.52 g), pod yield per plant (0.146 kg/ha) and pod yield (10.71 t/ha) but also produced favourable effect on pod quality in terms of ascorbic acid(11.00 mg/100g) and fibre content (1.95%) in okra pods while in TSS and protein content was found on non-significant effect. From economics point of view, pod yield (11.52 t/ha) and highest benefit cost ratio (1.93:1) were obtained with treatment combination N_1L_3 i.e. 100 % RDN with 2% of Novel organic liquid fertilizer. So, nitrogen fertilizer 100% RDN and 2% of Novel organic liquid fertilizer successfully increased yield (t/ha) and exhibited the highest B:C ratio of okra cv. GAO – 5 under south Gujarat condition.

Keywords: Okra, Nitrogen, Novel organic liquid fertilizer, Yield parameters, Quality parameter.

Cite this article: Chotaliya, K., Masaye, S. S., Gaikwad, S. S., Patel, A., & Chavda, J. K. (2020). Effect of Different Levels of Nitrogen and Novel Organic Liquid Fertilizer on Yield and Quality of Okra {*Abelmoschus esculentus* (L.) Moench} cv. GAO – 5., *Ind. J. Pure App. Biosci.* 8(6), 73-81. doi: http://dx.doi.org/10.18782/2582-2845.7068

Chotaliya et al.

INTRODUCTION

Okra {*Abelmoschus esculentus* (L.) Moench} is herbaceous hairy annual plant widely cultivated in the tropical or sub- tropical countries. It belongs to Malvaceae family. Okra known as '*Gumbo*' in United States of America, 'Lady's finger' in England and '*Bhindi*' in India (Chauhan, 1972) India is the largest producer of okra in the world.

Nitrogen is the most essential element of plant nutrition; plants take it up in significant amounts. Sufficient nitrogen supply improves cell division, foliage production and photosynthetic activity of the plant, thus producing higher numbers of flowers and fruits (Sharma & Yadav, 1996). Globally, nitrogen is considered to be the second most limiting factor production in crop (Sattelmacher et al., 1994) and limits yields in non-fertilized crop land. It is applied in order to increase yield and improve crop quality. Nitrogen fertilizer rate and time of application are decisive factors in influencing high yields, increased protein content and improved gluten quality (Borghi et al., 1997) With this background the present investigation on drip irrigation of okra was taking up to study the effect of different levels of nitrogen and novel organic liquid fertilizer on yield and quality parameters, as well as optimised the fertilizer application through drip for achieving better growth of okra.

A field experiment was conducted, with a view to present study entitled "Effect of different levels of nitrogen and *Novel* organic liquid fertilizer on yield and quality of okra {*Abelmoschus esculentus* (L.) Moench} cv. GAO-5" during summer season 2017 at Agriculture Experimental Station (AES), Navsari Agricultural University, Village: Paria, Taluka: Pardi, District: Valsad, Gujarat, India. The experiment was laid out in Split Plot Design with comparing of two factors viz., different levels of nitrogen (100%, 80% and 60%) and *Novel* organic liquid fertilizer (0, 1 and 2%) with six replications and nine treatment combination.

the recommended Among dose of chemical fertilizers (i.e. 100:50:50 kg NPK/ha), 100 recommended dose of P and K were applied as a basal dose through placement method of fertilizers application in the form of SSP and MOP, respectively. With regards to Recommended Dose of Nitrogen (RDN), 50% RDN was also applied as a basal dose along with P and K fertilizers, while remaining quantity of RDN was applied through drip irrigation as per treatments in four equal splits at 30, 40, 50 and 60 DAS. For foliar application of Novel organic liquid fertilizer, the desired quantity of spray solution was prepared with the help of below given formula. It was prepared just before foliar spray and sprayed at 30, 40, 50 and 60 DAS as per treatments.

MATERIALS AND METHODS

=

Amount of Novel organic liquid fertilizer required (ml) Desired concentration (%)

X Desired volume(ml)

100

than optimum nitrogen levels delayed the flowering. This may be due to the fact that excessive supply of nitrogen promotes luxuriant and succulent vegetative growth dominating the reproductive phase reported by Mohammad et al. (2010), similar findings were observed by Sharma et al. (2016).

Days to first fruit picking

Days to 1st fruit picking significantly influenced by different levels of nitrogen.

RESULT AND DISCUSSION Days to 50% flowering

In present investigation, significantly influenced by minimum days to 50% flowering (42.89) was observed in treatment N_1 (100 % RDN) while maximum days to 50% flowering (46.67) was recorded in treatment N_3 (Table 1). Regarding to the nitrogen fertilizer, doses less than optimum levels plant showed the early flowering while doses more

Copyright © Nov.-Dec., 2020; IJPAB

ISSN: 2582 - 2845

Chotaliya et al.

Pod diameter

Significantly days for 1^{st} fruit picking (48.11) were noted under 100 % RDN (N₁) while maximum days to 1^{st} fruit picking (52.94) were observed in treatment N₃ in the present study (Table 2). This is increases due to the increased vegetative growth under abundance of nitrogenous fertilizers for photosynthesis activity by suggested in Chaurasia et al. (2005). The number of days to first picking increased with increasing nitrogen levels. The results are line by Khan et al. (2000).

Also for days to 1^{st} fruit picking noted by significantly. Minimum days to 1^{st} fruit picking (47.33 days) were recorded in treatment L₃ (2% novel organic liquid fertilized), while maximum days to 1^{st} fruit picking (51.94 days) were observed in L₁ (Table 2). This is increases due to the increased vegetative growth under abundance of nitrogenous fertilizers for photosynthesis activity. Singhal et al. (2015) in cow pea. Also for similar result indicated Deore et al. (2010).

Number of pods per plant

Significantly maximum number of pods per plant (15.93) was recorded with application of 100 % RDN (N_1), while minimum number of pods per plant (13.89) was recorded with 60% RDN (N_3) (Table 3). Khan et al. (2000) reported that the highest number of pods per plant might be due to vigour of plant while in less number of pods per plant might due to the poor nutritional status of control treatment. Similar findings were observed Rahman et al. (2012), Sharma et al. (2016).

Number of pods per plant was found significantly influenced by Novel organic liquid fertilizer. Significantly higher number of pods per plant (15.45) by application of 2% of Novel organic liquid fertilizer (L₃) while minimum number of pods per plant (14.35) in treatment L_1 (Table 3). The increases in number of pods might be due to the supply of more nutrient at critical stage (i.e. flowering and fruiting) an abundance of nitrogenous fertilizers for photosynthesis activity which ultimately enhanced utilization of photosynthates and increased allocation of photosynthates towards the economic parts. Singhal et al. (2015) in cowpea.

The results to pertaining pod diameter were observed non- significant. Higher pod diameter (1.75) was recorded in treatment N_1 (100% RDN), While minimum pod diameter (1.63) was recorded in treatment N_3 (Table 4). Higher nitrogen rate increases the fruit diameter. Similar results were noted by Pervez et al. (2004).

The results pertaining to the effect of novel organic liquid fertilizer on pod diameter was found non-significant. However maximum pod diameter (1.69 cm) was recorded with the application of 1% of novel organic liquid fertilizer (L₂) while minimum pod diameter of (1.66 cm) was recorded in treatment L₁ (Table 4).

Pod length

The results pertaining pod length was observed significant. Significantly more pod length (11.36 cm) was recorded under treatment N_1 (100% RDN), while minimum pod length (10.65 cm) was recorded under treatment N_3 (Table 5). Khan et al. (2000) who reported that pod length was significantly improved by application of nitrogen. Similar findings were noted by Sharma et al. (2016).

The results pertaining *Novel* organic liquid fertilizer on pod length was found significant. Significantly maximum pod length (10.88 cm) was recorded with the application of 2% of novel organic liquid fertilizer (L₃) while minimum pod length (10.46 cm) was recorded in treatment L₁ (Table 5). This might due to increase in the photosynthesis activity which ultimately enhanced utilization of photosynthates towards the pod length. Similar result found Singhal et al. (2016) in okra.

Pod weight

The results pertaining, individual mean pod weight was recorded significant. Significantly higher pod weight (11.18 g) in treatment N_1 (100 % RDN) while in lowest pod weight recorded (10.47 g) in treatment N_3 . (Table 6) Similar findings were noted by Sharma et al. (2016).

The results pertaining, individual mean pod weight was recorded significant.

Chotaliya et al.

Significantly higher pod weight (11.52 g) in treatment L_3 (2%novel organic liquid fertilizer) while in lowest pod weight recorded (10.16 g) in treatment L_1 (Table 6).

Pod yield

In present investigation, pod yield per plant significantly influenced by different levels of nitrogen. Significantly highest pod yield per plant (0.148 kg) and pod yield (10.93 t/ha) was recorded in treatment N₁ (100% RDN) while minimum pod yield per plant (0.137 kg) and pod yield (9.86 t/ha) was recorded in treatment N₃ (Table 7 and 8). The increases in the yield might due to greater availability of nutrients, increased uptake of nutrients and water, resulting in more photosynthesis and enhanced food accumulation in edible parts of fruits. Similar results are in close agreement with, Westerveld et al. (2003).

The present investigation, pod vield was significantly influenced by novel organic liquid fertilizer. Application of 2% of novel organic liquid fertilizer (L₃) was recorded highest pod yield per plant (0.146 kg) and pod yield (10.71 t/ha) while lowest pod yield was obtained in treatment L_1 (Table 7 and 8). The spraying of novel organic liquid fertilizers increases uptake of nutrients and water, resulting in more photosynthesis and enhanced food accumulation in edible parts. The probable reasons for increase in yield might be due to easy assimilation of nutrients and balance in NPK ratio which affects the crop productivity. Salunkhe (2010) 14 also reported that higher level of fertilizers helped in formation of food reservoir due to higher photosynthetic activity, cellular activity in the roots and leaves both resulting in increased the yield. Similar results found by Deore et al. (2010) in chilli, Singhal et al. (2015) in cowpea, Singhal et al. (2016) in okra.

Quality parameters

Ascorbic acid

Higher values of ascorbic acid (10.98 mg/100g) was obtained in treatment N_1 (100 % RDN) while in lowest ascorbic acid (10.45 mg/100g) in treatment N_2 (Table 8). The augmentation of ascorbic acid content might due to either increased ascorbic acid

biosynthesis or to protection of synthesized ascorbic acid from oxidation through ascorbic acid oxidase. (Deshmukh et al., 2010). Similar result found Kamal Narayan et al. (2011).

The results pertaining novel organic liquid fertilizer on ascorbic acid was found significant. A higher value of ascorbic acid (11.00 mg/100g) was obtained by treatment L_2 (2% of novel organic liquid fertilizer) while in lowest ascorbic acid (10.44 mg/100g) in treatment L_1 (Table 9).

Fiber content

Fiber content of okra was recorded significantly maximum fiber content (1.71%) in treatment N_1 (100% RDN) while in lowest fiber content was recorded (1.47 %) in treatment N_3 (Table 10). This is attributed to the enhanced metabolic activity of plant under frequent fertigation resulting in increased protein synthesis thus accumulating low fiber as reported Venkadeswaran et al. (2014). The increases in fiber content might be due to increases the nitrogen fertilizer also increased okra yield and quality of fiber also increases or decreasing the quality characters.

Fibre content of okra was recorded significantly maximum (1.95%) in treatment L_3 (2 % of novel organic liquid fertilizer) while in lowest fibre content (1.20%) was recorded in treatment L_1 (Table 10).

Total soluble solids (TSS)

In present investigation, TSS content of at 60 DAS of pods did not showed (Table 11) any significant difference due to the treatments, even through the treatment with nitrogen (N_1) and novel organic liquid fertilizer (L_3) recorded the highest TSS content (3.98° Brix). The increases in quality character (TSS) might due to the growth promoting substances which could have accelerated the synthesis of carbohydrates; vitamin and others quality character (Chaurasaia et al., 2005). Similar results found that Premashanker and Rajashree (2009).

In present investigation, TSS content of the 60 DAS of pods did not show any significant even through nitrogen with novel organic liquid fertilizer (Table 11).

Chotaliya et al.	Ind. J. Pure App. Biosc	<i>i</i> . (2020) 8(6), 73-81	ISSN: 2582 – 2845
Protein content		Economic benefits	ultimately matters for
Protein content of okra	pod was non -	vegetable growers.	The economics in terms of
significantly influenced by	nitrogen fertilizer	gross and net retur	n for different treatments
whenever higher protein	content (7.63%)	involved in the p	present investigation was
recorded in treatment N1 (1	00% RDN) which	worked out (Table	13). Among, the different
minimum protein content (7	.18%) recorded in	treatments, the appl	ication of 100% RDN and
treatment N ₃ (Table 12). Sir	nilar results found	2% novel organic li	quid fertilizer (N ₁ L ₃) were
that Samlind and Sam Rubar	n (2007).	achieved the max	imum pod yield (11,059
Protein content of	okra was non -	kg/ha) and recorde	d the higher benefit: cost
significant influenced by no	vel organic liquid	ratio (1.93:1) which	n was closely followed by
fertilizer, however higher	protein content	the treatment N_1L_2	(100 % RDN+ 1% novel
(7.55%) recorded in treat	tment N_1 (100%)	organic liquid ferti	lizer) recorded the benefit

Economics

RDN) while minimum protein content (7.29%)

was recorded in treatment N₃ (Table 12).

Table 1: Effect of different levels of nitrogen and novel organic liquid fertilizer ondays to 50% flowering in okra

cost ratio (1.78:1). Similar finding confirmed

to Firoz et al. (2009).

Days to 50% flowering					
Novel	L ₁	L_2	L_3	Mean	
Nitrogen	(Water spray)	(1%Foliar spray)	(2%Foliar spray)	(N)	
N ₁ (100%RDN)	45.33	44.67	38.67	42.89	
N ₂ (80% RDN)	45.00	44.67	40.00	43.22	
N ₃ (60% RDN)	47.67	47.67	44.67	46.67	
Mean (L)	46.00	43.67	41.11		
	SEm±	C.D. at 5%			
Ν	0.72	2.26	C.V.% (Main plot)	6.86	
L	0.50	1.44	C.V.% (sub plot)	4.79	
NXL	0.87	NS			

Table 2: Effect of different levels of nitrogen and novel organic liquid fertilizer ondays to first picking in okra

	Days to first picking					
Novel	L_1	L_2	L_3	Mean (N)		
Nitrogen	(Water spray)	(1%Foliarspray)	(2%Foliar spray)			
N ₁ (100%RDN)	51.17	48.83	44.33	48.11		
N ₂ (80% RDN)	51.17	51.00	47.00	49.72		
N ₃ (60% RDN)	53.50	54.67	50.67	52.94		
Mean (L)	51.94	51.50	47.33			
	SEm±	C.D. at 5%				
Ν	0.96	3.03	C.V.% (Main plot)	8.13		
L	0.85	2.46	C.V.% (sub plot)	7.18		
NXL	1.47	NS				

Table 3: Effect of different levels of nitrogen and novel organic liquid fertilizer onnumber of pod per plant in okra

Number of pod per plant					
Novel	L_1	L_2	L_3	Mean (N)	
Nitrogen	(water spray)	(1%Foliarspray)	(2%Foliar spray)		
N ₁ (100%RDN)	15.30	15.61	16.88	15.93	
N ₂ (80% RDN)	14.61	14.87	15.09	14.86	
N ₃ (60% RDN)	13.13	14.19	14.37	13.89	
Mean (L)	14.35	14.89	15.45		
	SEm±	C.D. at 5%			
Ν	0.40	1.26	C.V.% (Main plot)	11.40	
L	0.27	0.78	C.V.% (sub plot)	7.65	
NXL	0.47	NS			

Ind. J. Pure App. Biosci. (2020) 8(6), 73-81

Chotaliya et al.

 Table 4: Effect of different levels of nitrogen and novel organic liquid fertilizer on pod diameter (cm) in okra

Pod diameter				
Novel	L_1	L_2	L_3	Mean
Nitrogen	(water spray)	(1%Foliarspray)	(2%Foliar spray)	(N)
N ₁ (100%RDN)	1.73	1.77	1.75	1.75
N ₂ (80% RDN)	1.68	1.63	1.61	1.64
N ₃ (60% RDN)	1.59	1.67	1.62	1.63
Mean (L)	1.67	1.69	1.66	
	SEm±	C.D. at 5%		
Ν	0.04	NS	C.V.% (Main plot)	8.88
L	0.03	NS	C V % (sub plot)	6.60
NXL	0.05	NS		0.00

Table 5: Effect of different levels of nitrogen and novel organic liquid fertilizer on pod length (cm) in okra

Pod length				
Novel	L ₁	L_2	L_3	Mean
Nitrogen	(water spray)	(1%Foliarspray)	(2%Foliar spray)	(N)
N ₁ (100%RDN)	10.74	11.13	12.22	11.36
N ₂ (80% RDN)	10.19	10.53	11.96	10.89
N ₃ (60% RDN)	10.44	10.06	11.46	10.65
Mean (L)	10.46	10.57	10.88	
	SEm±	C.D. at 5%		
Ν	0.16	0.49	C.V.% (Main plot)	6.01
L	0.14	0.42	C V % (sub plot)	5 57
NXL	0.25	NS		3.57

Table 6: Effect of different levels of nitrogen and novel organic liquid fertilizer on pod weight (cm) in okra

Pod weight				
Novel	L_1	L_2	L_3	Mean
Nitrogen	(water spray)	(1%Foliar spray)	(2%Foliar spray)	(N)
N ₁ (100%RDN)	10.31	11.27	11.96	11.18
N ₂ (80% RDN)	10.05	10.98	11.77	10.93
N ₃ (60% RDN)	10.13	10.45	10.83	10.47
Mean (L)	10.16	10.90	11.52	
	SEm±	C.D. at 5%		
Ν	0.16	0.52	C.V.% (Main plot)	6.41
L	0.16	0.46	CV % (sub plot)	6.26
NXL	0.28	NS	C.v.% (sub plot)	0.26

Table 7: Effect of different levels of nitrogen and novel organic liquid fertilizer on podyield per plant (kg) in okra

Pod yield per plant					
Novel	L ₁	L_2	L ₃	Mean	
Nitrogen	(water spray)	(1%Foliar spray)	(2%Foliar spray)	(N)	
N ₁ (100%RDN)	0.140	0.148	0.158	0.148	
N ₂ (80% RDN)	0.138	0.148	0.147	0.144	
N ₃ (60% RDN)	0.135	0.142	0.134	0.137	
Mean (L)	0.141	0.146	0.146		
	SEm±	C.D. at 5%			
Ν	0.002	0008	C.V.% (Main plot)	7.98	
L	0.001	0.004	CV % (sub plot)	4 47	
NXL	0.002	0.007		4.47	

Ind. J. Pure App. Biosci. (2020) 8(6), 73-81

Chotaliya et al.

 Table 8: Effect of different levels of nitrogen and novel organic liquid fertilizer on pod

 yield (t/ha) in okra

Pod yield (t/ha)					
Novel	L_1	L ₂	L_3	Mean	
Nitrogen	(water spray)	(1%Foliar spray)	(2%Foliar spray)	(N)	
N ₁ (100%RDN)	10.40	10.87	11.52	10.93	
N ₂ (80% RDN)	10.22	10.86	11.06	10.71	
N ₃ (60% RDN)	10.02	10.02	9.55	9.86	
Mean (L)	10.21	10.58	10.71		
	SEm±	C.D. at 5%			
N	0.14	0.44	C.V.% (Main plot)	5.65	
L	0.13	0.37	C V % (sub plot)	5.17	
NXL	0.22	0.64		5.17	

Table 9: Effect of different levels of nitrogen and novel organic liquid fertilizer on podascorbic acid (mg/100g) in okra

Pod ascorbic acid					
Novel	\mathbf{L}_{1}	L_2	L_3	Mean	
Nitrogen	(water spray)	(1%Foliar spray)	(2%Foliar spray)	(N)	
N ₁ (100%RDN)	10.57	10.92	11.46	10.98	
N ₂ (80% RDN)	10.15	10.52	10.69	10.45	
N ₃ (60% RDN)	10.59	9.92	10.86	10.46	
Mean (L)	10.44	10.45	11.00		
	SEm±	C.D. at 5%			
N	0.14	0.44	C.V.%(Main plot)	5.63	
L	0.14	0.40	C V % (sub plot)	5 56	
NXL	0.24	NS		5.56	

Table 10: Effect of different levels of nitrogen and novel organic liquid fertilizer onpod fiber content (%) in okra

Pod fiber content				
Novel	L ₁	L_2	L_3	Mean
Nitrogen	(water spray)	(1%Foliar spray)	(2%Foliar spray)	(N)
N ₁ (100%RDN)	1.29	1.76	2.08	1.71
N ₂ (80% RDN)	1.17	1.56	1.95	1.56
N ₃ (60% RDN)	1.14	1.45	1.81	1.47
Mean (L)	1.20	1.59	1.95	
	SEm±	C.D. at 5%		
N	0.03	0.07	C.V.%(Main plot)	6.60
L	0.02	0.06	C V % (sub plot)	6 20
NXL	0.04	NS	$C.v. / \delta$ (sub plot)	0.29

Table 11: Effect of different levels of nitrogen and novel organic liquid fertilizer on pod TSS (° Brix) in okra

Pod TSS (° Brix)					
Novel	L ₁	L_2	L ₃	Mean	
Nitrogen	(water spray)	(1%Foliar spray)	(2%Foliar spray)	(N)	
N ₁ (100%RDN)	3.68	4.03	4.24	3.98	
N ₂ (80% RDN)	3.85	3.87	3.97	3.90	
N ₃ (60% RDN)	3.73	3.83	3.69	3.75	
Mean (L)	3.76	3.91	3.97		
	SEm±	C.D. at 5%	•		
Ν	0.09	NS	C.V.%(Main plot)	9.31	
L	0.08	NS	C V % (sub plot)	0.04	
NXL	0.14	NS	C.v. % (sub plot)	9.04	

ISSN: 2582 - 2845

Chotaliya et al.

Ind. J. Pure App. Biosci. (2020) 8(6), 73-81

Table 12: Effect of different levels of nitrogen and novel organic liquid fertilizer on pod protein content (%) in okra

Pod protein content											
Novel	L ₁	L_2	L ₃	Mean							
Nitrogen	(water spray)	(1%Foliar spray)	(2%Foliar spray)	(N)							
N ₁ (100%RDN)	7.57	7.42	7.90	7.63							
N ₂ (80% RDN)	7.13	7.23	7.64	7.33							
N ₃ (60% RDN)	7.17	7.27	7.10	7.18							
Mean (L)	7.29	7.31	7.55								
	SEm±	C.D. at 5%									
N	0.13	NS	C.V.% (Main plot)	7.64							
L	0.13	NS	C V % (sub plot)	7 57							
NXL	0.23	NS		1.57							

Treat.	Pod yield (kg/ha)	Common cost	Treat- ment cost	Fixed cost	Total cost	Gross Return	Net Return	B:C ratio
N_1L_1	10397	60304	4551	12996	77851	207940	130089	1.67
N_1L_2	10865	60304	4273	13581	78158	217300	139142	1.78
N_1L_3	11518	60304	4001	14398	78702	230360	151658	1.93
N_2L_1	10217	60304	7671	12771	80746	204340	123594	1.53
N_2L_2	10860	60304	7393	13575	81272	217200	135928	1.67
N_2L_3	11058	60304	7121	13823	81247	221160	139913	1.72
N_3L_1	10017	60304	10791	12521	83616	200340	116724	1.40
N3L2	10017	60304	10513	12521	83338	200340	117002	1.40
N_3L_3	9552	60304	10241	11939	82483	191020	108537	1.32

Table 13: Economics of different treatments (Rs. ha⁻¹)

CONCLUSIONS

In view of the results obtained from this investigation, it could be concluded that the highest yield with better pod quality and net return (B:C 1.93: 1) can be achieved by fertilizing the okra cv.GAO-5 with nitrogen fertilizers of 100% RDN and 2% foliar application of novel organic liquid fertilizer (N_1L_3) under South Gujarat condition.

REFERENCES

- Borghi, B. M., Corbellini, C., Minoia, M., Palumbo, N., & Di Fonzo & Perenzin, M. (1997). Effects of Mediterranean climate on wheat bred making quality. *European J of Agronomy*. 6, 145-154.
- Chauhan, D. V. S. (1972). "Vegetable production in India". 3rd ed., Ram Prasad and Sons (Agra).
- Chaurasia, S. N. S., Singh, K. P., & Rai, M. (2005). Effect of foliar application of water soluble fertilizers on growth, yield and quality of tomato (Lycopersicon esculentum L.). Sri Lankan J. Agric. Sci. 42, 66-70.

- Deore G. B., Limaye A. S., Shinde, B. M., & Laware, S. L. (2010). Effect of Novel Organic Liquid Fertilizer on Growth and yield in Chilli. *Asian J. Exp. Biol. Sci.* 15-19.
- Deshmukh, D. A., Telang, S. M., & Patil, S. S. (2010). Influence of foliar application of growth hormones and fertilizer on the field and ascorbic content in chilli cv. "Prabhani Tejas". Asian J. Soil Sci., 5(1), 114-115.
- Firoz, Z. A. (2009). Impact of nitrogen and phosphorous on the growth and yield of okra in hill slope condition. *Banglesh J. Agril. Res.* 34(4), 713-722.
- Khan, H., Khan, M., Rasul, K., Majeed, A., & Safi, F. A. (2000). Effect of different levels of nitrogen alone and in combination with constant doses of phosphorous and potassium on growth and yield of okra (*Abelmoschus esculentus* L.) cv. T-13 under the Agro-climate conditions of Mingora, Swat. *Pak. J. Sci.*, 3(12), 2101-2104.

- Dubey, K. N., Sharma, P., Vijay, D., Katre, T., & Rajhansa, K. C. (2011). Effect of foliar application of water soluble fertilizers on flowering, yield and quality attributes of tomato. *Veg. Sci.* 6(1), 225-228.
- Mohammad, H., Hossein, A., Fatemi, A., & Karimpour, S. (2010). Responses of eggplant (*Solanum melongena* L.) to different rates of Nitrogen under field conditions. J. of Cen. Euro. Agril, 11(4), 453-458.
- Patil, G. B., Panchbhai, D. M. (2003). Response of okra varieties for different nitrogen levels. *Annuals of plant physiology*, 17(2), 146-149.
- Pervez, M. A., Ayub, C. M., Saleem, R. B., Virk, N. A., & Mahmood, A. (2004). Effect of nitrogen levels and spacing on growth and yield of Radish (*Raphanus sativus* L.) *Inter J. of agri. Bio.* 6(3), 504-506.
- Premsekhar, M., & Rajashree, V. (2009). Performance of hybrid tomato as influenced by foliar feeding of water soluble fertilizers. *Am- Eurasian J. Sustain. Agric.*, 3(1), 33-36.
- Rahman, M. A., & Akter, F. (2012). Effect of NPK fertilizers on growth, yield and yield attributes of okra. *Bangladesh J. Botnical.* 41(2), 131-134.
- Salunkhe, J. R. (2010). Feasibility of using banana pseudostem sap as liquid fertilizer in onion under drip irrigation. M.Sc. thesis, Navsari Agricultural University, N.A.U., Navsari. (Unpublished).
- Samlind, G., & Sam Ruban, J. (2007). Effect of different levels of nitrogen and spacing on crude protein of amaranthus cv. CO.3. *Asian J. Hort.* 2(1), 222-223.

- Sattelmacher, B., Horst, W. J., & Becker, H. C. (1994). Factors that contribute to genetic variation for nutrient efficiency of crop plants. *J of plant nutrition and soil science 157*(3), 224-225.
- Sharma, F., & Yadav, S. (1996). Controlling ammonia volatilaztion from urea surface applied to sugar beet on a calcareous soil. *Common Soil Sci. 17*, 9-10.
- Sharma, P., Kaushal, A., Singh, A., & Garg, S. (2016). Growth and yield attributes of okra under influence of drip irrigation. *Inter. J. Engin. Res. and Appl.* 6(2), 85-91.
- Singhal, V. K., Patel, G. G., Bambhaneeya, S., Patel, D. H., & Saras, P. K. (2015). Effect of foliar application of water soluble fertilizers on growth, yield and economics of vegetable cowpea production. An inter. Quarterly. J. of Enviro. Sci. VII, 79-83.
- Singhal, V. K., Patel, G. G., Bambhaneeya, S., Patel, D. H., & Saras, P. K. (2016). Effect of foliar application of water soluble fertilizer in okra. *Res. In Enviro. Life. Sci.*, 9(3), 297-299.
- Venkadeswaran, E., Sundaram, V., & Sankar, R. (2014). Influence of trickle fertigation on yield and quality of hybrid okra (*Abelmoschus esculentus* L.) Moench). *Asian. J. Hort.* 9(2), 285-290.
- Westerveld, S. M., McDonald, M. R., & McKeown, A. W. (2003). Effect of optimum nitrogen fertilization of summer Cabbage in Ontario. Acta Hort. 627, 211-215.